Closing Wed night: HW_1A, 1B, 1C Check out the first newsletter for homework hints, review sheets and old exam practice.
Entry Tasks:
(a) $f^{\prime \prime}(x)=5 \sqrt{x}+x, \mathrm{f}(0)=3, \mathrm{f}(1)=4$

Find $f(x)$.
(b) Ron steps off the 10 meter high dive at his local pool. Find a formula for his height above the water.
(Assume his acceleration is a constant $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward)

### 5.1 Defining Area

Calculus is based on limiting processes that "approach" the exact answer to some rate question.

In Calculus I, you defined $\mathrm{f}^{\prime}(\mathrm{x})=$ `slope of the tangent at $x^{\prime}$

$$
=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In Calculus II, we will see that antiderivatives are related to the area 'under' a graph

$$
=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$



## Example:

Approximate the area under $f(x)=x^{3}$ from $x=0$ to $x=1$ using
$\mathrm{n}=3$ subdivisions and
right-endpoints to find the height.

Riemann sums set up:
We are going to build a procedure to get better and better approximations of the area "under" $f(x)$.

1. Break into $n$ equal subintervals.

$$
\Delta x=\frac{b-a}{n} \text { and } x_{i}=a+i \Delta x
$$

2. Draw $n$ rectangles; use function. Area of each rectangle $=$ (height) $($ width $)=f\left(x_{i}^{*}\right) \Delta x$
3. Add up rectangle areas.

I did this again with 100 subdivisions, then 1000 , then 10000 . Here is the summary of my findings:

| $n$ | $R_{n}$ | $L_{n}$ |
| :--- | :--- | :--- |
| 4 | 0.390625 | 0.140625 |
| 5 | 0.36 | 0.16 |
| 10 | 0.3025 | 0.2025 |
| 100 | 0.255025 | 0.245025 |
| 1000 | 0.25050025 | 0.24950025 |
| 10000 | 0.2499500025 | 0.2500500025 |

Right-Endpoint Pattern:

$$
\Delta x=\frac{1-0}{n}=\frac{1}{n}, \quad x_{i}=0+i \frac{1}{n}=\frac{i}{n}
$$

$$
\begin{aligned}
& \text { Height of rect. }=f\left(x_{i}\right)=x_{i}^{3}=\left(\frac{i}{n}\right)^{3} \\
& \text { Area }=f\left(x_{i}\right) \Delta x=x_{i}^{3} \Delta x=\left(\frac{i}{n}\right)^{3} \frac{1}{n}
\end{aligned}
$$

$$
\text { Sum }=\sum_{i=1}^{n} x_{i}^{3} \Delta x=\sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}
$$

$$
\text { Exact Area }=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \frac{1}{n}
$$

## Definition of the Definite Integral

We define the exact area "under" $f(x)$
from $x=a$ to $x=b$ curve to be

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\quad \Delta x=\frac{b-a}{n}$ and

$$
x_{i}=a+i \Delta x
$$

We call this the definite integral of $f(x)$ from $x=a$ to $x=b$, and we write

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

